
Justifying Social-Choice Mechanism Outcome for Improving
Participant Satisfaction

Sharadhi Alape Suryanarayana
Bar-Ilan University
Ramat Gan, Israel

sharadhi.as@gmail.com

David Sarne
Bar-Ilan University
Ramat Gan, Israel

david.sarne@biu.ac.il

Sarit Kraus
Bar-Ilan University
Ramat Gan, Israel
sarit@cs.biu.ac.il

ABSTRACT
In many social-choice mechanisms the resulting choice is not the
most preferred one for some of the participants, thus the need for
methods to justify the choice made in a way that improves the ac-
ceptance and satisfaction of said participants. One natural method
for providing such explanations is to ask people to provide them,
e.g., through crowdsourcing, and choosing the most convincing
arguments among those received. In this paper we propose the use
of an alternative approach, one that automatically generates expla-
nations based on desirable mechanism features found in theoretical
mechanism design literature. We test the effectiveness of both of the
methods through a series of extensive experiments conducted with
over 600 participants in ranked voting, a classic social choice mech-
anism. The analysis of the results reveals that explanations indeed
affect both average satisfaction from and acceptance of the outcome
in such settings. In particular, explanations are shown to have a
positive effect on satisfaction and acceptance when the outcome
(the winning candidate in our case) is the least desirable choice for
the participant. A comparative analysis reveals that the automati-
cally generated explanations result in similar levels of satisfaction
from and acceptance of an outcome as with the more costly alterna-
tive of crowdsourced explanations, hence eliminating the need to
keep humans in the loop. Furthermore, the automatically generated
explanations significantly reduce participants’ belief that a differ-
ent winner should have been elected compared to crowdsourced
explanations.
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1 INTRODUCTION
As intelligent agents and AI-based systems are becoming increas-
ingly prevalent and with the increase in their use, the ability to
explain their decisions and choices to their human users becomes
a standard requirement. The need for such an explanation is espe-
cially acute whenever these systems employ complex algorithms
that are generally incomprehensible to the non-expert users, or
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whenever it is difficult for users to distinguish bad outcomes from
good decisions (given the information available to the system). For
example, when providing incorrect GPS directions [53], task divi-
sion that is not preferred by the user [55] or actions picked based
on incorrect modelling assumptions leading to a catastrophe (as
in the case of the mortgage crisis [12]). In all of these examples,
convincing the stakeholders that the decision is justified needs to
consider two factors - the complexity of the algorithm and the
dissatisfaction of the stakeholders - thus making the said process
difficult. Indeed, in recent years researchers have invested tremen-
dous efforts in developing methods for generating explanations for
decisions made by machine-learning-based systems [29, 41] and
recommender systems [24, 25], which are mainly black-box algo-
rithms. Common to all of these methods, is that they are ultimately
trying to convince the user of the optimality of the decision made
according to some well-defined goal function which is known to
and accepted by the user.

In many settings, however, the system is designed to reach a
decision that applies to several participants, often associated with
conflicting goals. This is the case, for example, in social choice
settings (e.g., fair division, auctions, voting systems), for which
numerous mechanisms have been designed over the years. Here,
explaining the decision made by the system is far more complicated,
as it is clearly not optimal for some of the participants. The purpose
of the explanation is thus to increase participant satisfaction from
and acceptance of the choice made whenever the decision made
is not in her favor. As such, explanations should be framed within
the social context of the underlying setting, emphasizing aspects
such as fairness, pareto optimality and overall social welfare [26].
Despite the importance of providing explanations in such settings,
most work to date, as we review later on, has focused on explaining
decisions of the above first type, i.e., arguing the optimality and
correctness of the decision made in the context of the user’s own
goals. Methods for arguing the legitimacy of selections made in
social choice settings are quite limited.

This paper studies the use of explanations for justifying the
outcome of such social choice mechanisms. In particular, we devise
and extensively evaluate two methods for generating explanations.
The first uses crowdsourcing, leveraging human intelligence in
order to produce explanations that are likely to convince people of
the legitimacy of the winning choice. This follows the line of work
where human intelligence is used to improve the performance of
system explainability [27, 47, 56]. The second method automatically
generates explanations based on features considered desirable when
designing a mechanism for making the social choice. For this, we
make use of the heterogeneity of different mechanisms, axioms
and criteria suggested in literature. The explanations generated



are centered around several numerical features that are used to
quantify the aforementioned theoretical concepts, thus eliminating
the need for the explanations to focus on a single argument. This
latter method, if successful, can save the extensive human resources
required in the first (and more intuitive) approach.

We use ranked voting as an infrastructure for evaluating the two
methods. Voting rules are used to decide diverse yet commonplace
subjects such as meeting schedules, award recipients, holiday desti-
nations and representatives of countries. These settings are known
as Preference Aggregation Settings. Despite their widespread usage,
voting rules suffer from a couple of drawbacks. The first is that in
all cases where individuals rank their preferences, it is impossible
to determine a clear order of preferences while adhering to manda-
tory principles of fair voting procedures [3]. This is unlike several
other decision-making settings where a solution can be reached
while optimizing a certain measure of social welfare. Consequently,
there are multiple voting rules being used today, which leads to the
second drawback - the fact that different voting rules may lead to
different winners and the results may not be fully understood or
accepted by the voters. Our experiments use six varied instances
of ranked voting, differing in the vote distribution and the winner
picked. Since the goal is to test for the effectiveness of the explana-
tions, in each such instance, the participants are asked to rate their
satisfaction and acceptance of the outcome that is not their most
preferred, with and without the generated explanations.

The analysis of the results of the experiments conducted with
465 participants reveals that explanations can be highly effective in
improving participant satisfaction from and acceptance of results
in social settings. Furthermore, the performance of the feature-
based, automatically generated explanations, i.e., those that do not
require manual labor to extract, is as good as the performance
of explanations suggested by people through crowdsourcing. In
particular, the feature-based explanations significantly reduce the
percentage of participants who believe another candidate is more
deserving of winning, compared to crowdsourced explanations and
no explanations.

2 EXPLANATION GENERATION
We consider two explanation generation methods. The first relies
on the wisdom of the crowd, whereas the second attempts to auto-
matically generate explanations based on properties and features
of such mechanisms. Both methods use two primary steps: gener-
ating the explanations and then evaluating them based on some
scoring or ranking process. The output of each method is up to 𝑛
explanations.

2.1 Crowdsourced Explanations
Even though the word "crowdsourced" is self-explanatory as to
how the explanations are obtained, we propose a refined approach
for obtaining the best set of explanations while relying on human
intelligence.

Explanation Generation. Participants are presented with the rel-
evant social choice setting, including the winning choice. After
making sure they fully understand and internalize the setting, they
are asked to provide some pre-defined number of reasons in support
of the winning choice.

Explanation Ranking. Adifferent set of participants are presented
with the relevant social choice setting, including the winning choice.
After making sure they fully understand and internalize the set-
ting, they are asked to review the explanations received in the
former stage, and pick the 𝑤 most convincing explanations. The
explanations are then ordered according to the number of times
they were picked by the reviewing participants and the set of 𝑛 top
explanations in the ordered list is the output of the process.

2.2 Feature-based Explanations
For the feature-based explanationswe use two similar stages, though
their content is completely different.

Explanation Extraction. A natural source for explanation of a
mechanism outcome is the set of properties that prior work on
mechanism design aimed at optimizing or satisfying. The intuition
is simple, suggesting that the properties of amechanism, even if they
hold only with purely rational and non-computational bounded
agents, are likely to be important, to some extent, to people. For
example, when considering a solution produced by a cake cutting
mechanism, desirable properties of the solution include fairness
– envy-freeness, equitability and proportionality [8], efficiency –
non-wastefulness, Pareto efficiency and utilitarian-maximality [23].
When considering a solution produced by a resource allocation
mechanism, desirable properties will include, among others, budget-
balancing, envy-freeness, efficiency of the allocation and minimal
manipulability [2, 39]. Each such property can be used as a potential
explanation for the selection of a solution that satisfies it using a
feature that quantifies it. Obviously, some of the possible solutions
of a mechanism may fall short in comparison to at least one other
solution with respect to every feature. While justifying the former
set of solutions is an intriguing problem, it is beyond the scope of the
current paper, as in real-life it is very unlikely that such an inferior
solution will be picked to begin with. For solutions satisfying 𝑘 ≤
𝑛, where 𝑛 is the number of required explanations and 𝑘 is the
number of features considered as potential explanations, the natural
approach would be to present the corresponding 𝑘 explanations.
For solutions satisfying 𝑘 > 𝑛, we use a heuristic scoring function
(see the following paragraph) that helps in determining which 𝑛 of
the 𝑘 explanations will be presented (and in what order).

Explanation Scoring. Our heuristic explanation scoring aims to
measure how apparent the dominance of a given solution is when
measured with respect to a given desired property. For example,
consider the budget-balancing property of a solution to an alloca-
tion problem. Here we can measure how far each solution is from
budget balancing (with a zero-distance in case of fully satisfying
the requirement).1 Consider the set of solutions 𝑆 = {𝑆1, ..., 𝑆𝑤}.
For each solution 𝑆𝑖 we use 𝑑 𝑗

𝑖
to denote the extent to which it

satisfies feature (based on the property) 𝑗 . We measure the domi-
nance of 𝑆𝑖 over the other solutions, with respect to feature 𝑗 , as∑𝑤
𝑡=1,𝑡≠𝑖 |𝑑

𝑗
𝑖
− 𝑑 𝑗𝑡 |. This can be interpreted as how far ahead the so-

lution is with respect to feature 𝑗 , compared to the other solutions.
1Meaning that even if the feature is binary, we can measure how close we are to having
it hold. For example, take the envy-free criterion. Two solutions can be envy-free, and
yet we can allegedly measure the extent of holding it (e.g., measure how far we are
from "envy" by measuring to what extent the allocation should change so that one of
the participants envies another).



We emphasize that various alternatives may be considered here. For
example, one may choose to measure the difference compared to
the second best solution with respect to the feature considered, to
avoid biases resulting from the existence of other extremely bad so-
lutions and such. Still, we find the sum of differences to be a decent
measure as it relates to all other solutions. Since different features
can be measured over different scales, we normalize their score by
dividing the dominance measure by the maximum (or minimum,
depending on the nature of the feature) potential value a solution
may obtain.2 Finally, the explanations are ordered according to
their normalized score and the top 𝑛 explanations (with ties broken
randomly) in the ordered list are the output of the process. The
process is summarized in Algorithm 1.

Algorithm 1 Picking Feature-Based Explanations
Require: Set of solutions 𝑆 , Solution to explain 𝑆𝑖 , number of

explanations required 𝑛, Set of features 𝐽
1: 𝑡𝑒𝑚𝑝 ← ∅
2: for all 𝑗 ∈ 𝐽 do
3: for all 𝑆𝑡 ≠ 𝑆𝑖 ∈ 𝑆 do
4: Obtain the value of 𝑑 𝑗

𝑖

5: Obtain the value of 𝑑 𝑗𝑡
6: if 𝑑 𝑗

𝑖
is inferior to 𝑑 𝑗𝑡 then

7: 𝐽 ← 𝐽 − 𝑗

8: break
9: end if
10: end for
11: end for
12: for all 𝑗 ∈ 𝐽 do
13: Calculate 𝑠𝑐𝑜𝑟𝑒 𝑗

𝑖
=
∑
𝑡≠𝑖 |𝑑

𝑗
𝑖
− 𝑑 𝑗𝑡 |

14: Normalize 𝑠𝑐𝑜𝑟𝑒 𝑗
𝑖
(divide by max/min potential score)

15: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 ∪ ( 𝑗, 𝑠𝑐𝑜𝑟𝑒 𝑗
𝑖
)

16: end for
17: sort 𝑡𝑒𝑚𝑝 by the values 𝑠𝑐𝑜𝑟𝑒 𝑗

𝑖
18: Return 𝑡𝑜𝑝 − 𝑛 features of 𝑡𝑒𝑚𝑝

Comparison ofMethods. Obviously the crowdsourced-basedmethod
is the more intuitive and natural one, as explanations proposed by
people are likely to be highly appealing to the participant. Still,
this method requires substantial resources in the form of payment
to those proposing the explanations. These resources should be
spent for every new instance of the problem. The feature-based
approach, on the other hand, requires only the extraction of the
features themselves (e.g., based on the guarantees of the different
mechanisms proposed for making the decision). This is done only
once and can then be used in generating explanations for every
new instance.

3 RANKED VOTING
We test the explanations produced with the two above methods for
different winners in ranked voting. Ranked voting uses preference
ballots in which the voter ranks the choices in order of preference.
2For example, when considering the first place votes (plurality) criterion, the maximum
is the number of total voters.

It is used as a means of deciding upon the winner of an election.
The most important differences between ranked voting systems lie
in the methods used to decide which candidate (or candidates) are
elected from a given set of ballots.

Formally, denote 𝑉 = {𝑣1, 𝑣2, ...𝑣𝑁 } as the set of 𝑁 voters and
𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑚} as the set of𝑚 candidates. Let𝑄𝑖 (𝑥) ∈ {1, 2, ..𝑚}
be the rank of candidate 𝑥 ∈ 𝐶 with respect to voter 𝑣𝑖 . We say that
voter 𝑣𝑖 prefers candidate 𝑥 to 𝑦 is denoted 𝑥 ≻ 𝑦, if𝑄𝑖 (𝑥) < 𝑄𝑖 (𝑦).
In order to conceptualize and quantify the notion of preference, we
use the concept of cardinal utilities as a function𝑈𝑖 : 𝐶 → Q.𝑈𝑖 is
consistent with the preference of voter 𝑣𝑖 such that𝑈𝑖 (𝑥) > 𝑈𝑖 (𝑦)
if and only if 𝑥 ≻ 𝑦. The usage of cardinal utilities translates as:
if voter 𝑣𝑖 prefers candidate 𝑥 to candidate 𝑦, then the utility of 𝑣𝑖
from 𝑥 is higher than that of 𝑦. Let 𝐿, also called preference ballot,
denote the preference orders of all of the 𝑛 voters. A voting rule is
a function 𝑓 : 𝐿 → 𝐶 that returns the set of winning candidates
given the voting profile.

Voting rules such as Plurality, Plurality with Runoff, Borda and
Condorcet are a few of the many voting rules used today in ranked
voting. They all have some desirable theoretical properties, but
none of them is perfect. Procaccia [38] argues that these desirable
properties, many of which are expressed as axioms, can be used to
explain the results of any mechanism and not just to cater to the
needs of the designer.

In order to design explanations to justify the selection of the
winning candidate in this domain, we make use of the following
features:

(1) First Place Votes (Plurality): The total number of first place
votes that the candidate received. This feature is mainly used
in voting methods such as Plurality and Majority [22].

(2) Bucklin Score: The total number of votes for the first place
for each of the candidates is counted. If no candidate gets
more than fifty percent of the votes, the cumulative number
of votes for the first and second place is counted. If any
candidate secures more than half of the votes, the counting
stops, otherwise it goes on at every level of preference until at
least one candidate gets more than half of the total votes. The
candidate that gets the highest cumulative score is declared
the winner and the cumulative score is called the Bucklin
Score [22].

(3) Borda Count: A candidate’s votes at every position areweighted
in reverse proportion to the ranking. The sumof theweighted
score is the Borda Count [15].

(4) Head-to-head Comparison: For each pair of candidates, the
candidate which is preferred by the highest number of voters
is determined. The candidate that wins every such compari-
son is the winner [54].

(5) Last Place Votes: The total number of votes cast ranking the
given candidate in the last place. This feature is obtained
from the criterion called “Absolute Loser Criterion", which
states that if a candidate has the highest last place votes, the
candidate should not win [31].

(6) Greatest Pairwise Opposition: The greatest score against a
given candidate when compared pairwise with each of the
other candidates. This is used in the Minimax Condorcet



Method where the winner has the least greatest pairwise
opposition [17].

4 EXPERIMENTAL FRAMEWORK
As a framework for our experiments, we used an interactive web-
based application that emulates a ranked voting system. The system
presents to each participant her specific preference order of candi-
dates and assigns a monetary compensation to each, accordingly.
It then presents the preferences of other voters, in a tabular form,
aggregating those with similar preference orders (see screenshot
in Figure 1). The participant’s preference aligns with any of the 4
columns where the first choice is not the winning candidate, i.e.,
she takes the role of one of the voters voting for that order. Once the
participant finishes carefully checking the ranked voting instance,
the system announces the winning candidate (without disclosing
the winner determination rule). This stage can be accompanied
with the presentation of an itemized list of explanations. Finally,
the participant is asked to specify her satisfaction and acceptance
of the result (on a scale of 1-5). The participant, in case of feeling
the winning candidate is not the right one, can choose an alternate
winner.

Figure 1: Screenshot: example of the voting table, winning
candidate and explanations.

5 EXPERIMENTAL DESIGN

Voting domain. In our experiments participants were introduced
with the results of a ranked voting instance aiming to determine
the best out of three cereal brands, namely Branflakes, Cariot and
Shugi, that are used in a distant country. This was done in order to
mitigate the effect of any personal bias, forcing participants to rely
solely on the preference order provided for them.

Voting instances. Each voting instance was comprised of𝑚 = 3
candidates and 𝑁 = 29 voters, where the participant is one of
them. This enabled sufficient variations of voting tables and helped
avoiding round numbers (numbers ending with 0 or 5) of the total
number of voters in the poll, as such numbers may be treated
differently by participants [33]. Having three candidates, we had a
total of six different preference permutations across which to divide
the 29 votes.

Six voting instances were manually generated, each specifying a
certain division of votes and the winner picked. These are described
in Table 1 which also specifies the features that hold for the winner
in each instance according to the list provided in Section 3.3 The
vote distribution column specifies the number of votes assigned
to each of the permutations according to their order as given in
Figure 1. These instances capture diverse settings like the winning
candidate standing first with respect to all of the six features (Vot-
ing instances 1 and 2), the winning candidate standing first with
respect to only one feature (Voting instances 3 and 4a) and the
winning candidate not having the highest first place votes (Voting
instances 3a and 4). This diversity gives rise to situations where the
number of crowdsourced explanations is higher than the number
of feature-based explanations (Voting instances 3 and 4a), giving an
advantage to crowdsourced explanations, and those where the num-
ber of feature-based explanations and crowdsourced explanations
are equal (Voting instances 1, 2, 3a and 4).

Table 1: Vote distribution and the different features satisfied
by the winner picked for that instance: (P)lurality, (B)orda,
(H)ead-to-Head, (BR) Bucklin Rule , (M)inimax Condorcet,
(L)ast.

Instance Vote Distribution Winner Features
1 6/4/4/7/4/4 P/B/H/BR/M/L
2 6/2/8/5/4/4 P/B/H/BR/M/L
3 1/4/7/6/7/4 P
3a 1/4/7/6/7/4 B/H/BR/M/L
4 5/2/6/4/6/6 B/H/BR/M/L
4a 5/2/6/4/6/6 P

Participant Preferences. A mere presentation of the voting table
and the winning candidate with no selfish interest might have
resulted in a lukewarm response from the participants. In order to
interest them in the voting table and the winning candidate, the
concept of utility from the winning candidate had to be realized.
Consequently, the participants were allotted a preferred order of
candidates. The participants were told that they would be awarded a
monetary compensation (bonus, on top of the base payment) based
on the ordinal position of the winning candidate with respect to the
aforementioned order of preference. However, for the possibility of
feeling compelled to be satisfied if the most preferred candidate of
the participant won (consequently, getting the highest bonus), i.e.
positive reciprocity bias [16], the participant was allotted an order
of preference such that the winning candidate is never the first
preference. Hence, the winning candidate in the experiments was
3Note that overall we had a total of four different vote distributions where two of them
were used twice, each time with a different winner.



either the participant’s second preference or third preference. The
bonus was the least if the winning candidate were the participant’s
third preference. In comparison to the least bonus, the bonus was
doubled if the participant’s second preference was declared winner
and quadrupled if her first preference was picked. Since the ordinal
position of the winning candidate with respect to the participant’s
order of preference is a factor in our analysis, we will henceforth
refer to it as Preference Index.

Experimental Flow. Participants were given a brief introduction
of the task which was followed by obtaining their Informed Consent
and the Demographic Details. The participants were then given
detailed instructions on the different phases of the task including
the voting table, the allocation of the preferred order of candidates,
the correlated bonus and the final survey. They were also informed
that the survey had to be answered assuming that the participant
was one of the voters. Prior to moving on to the main task, in
order to acquaint the participants with the different concepts, a
sample voting table was displayed and a quiz based on the same
was presented. The participants were then shown the actual voting
table.

Measures. Based on the voting table and the winning candidate,
the participant was required to answer three questions relating to
her acceptance of and satisfaction from the result:

• Satisfaction. (Question 1: How satisfied are you with the SE-
LECTION MECHANISM ending up with <winner identity>
as the winner, given the data presented to you?)
• Acceptance. (Question 2: Do you think <winner identity>
was rightfully elected?)
• Alternate Choice. (Question 2a: I believe option <select>
should have been elected, based on the data). This question
was asked only if the participant responded to Question 2
above as "No" or "Not Necessarily" (values 1 and 2 on the
scale) and the options that became available to the partici-
pant were the two non-winning candidates.
• Disappointment. (Question 3: How do you feel that your
first preference, <participant’s first preference>, has not won
and you have not gotten the maximum bonus?)

All three questions are answered by picking a value on a Likert
scale of 1-5. The first two questions were used for the analysis
on the effect of explanations on the participant with 1 being the
least desired value (e.g. lowest level of satisfaction) and 5 being the
most desired value. The third question was used primarily for a
sanity check (1 - Very unsatisfied and 5 - Highly Satisfied) – anyone
answering it as “highly satisfied" or “satisfied" (values 4 and 5 on
the scale) had her responses purged.

Participants. Participants were recruited and interacted through
Amazon Mechanical Turk (AMT). Participation was restricted to
AMT workers from the United States who had completed more
than 1000 Human-Intelligence-Tasks (HITs) and had more than
98 percent of their participated HITs approved. IRB Approval was
obtained in order to conduct the experiment. To prevent any car-
ryover effect, each participant was assigned to one voting table
instance and a corresponding winning candidate.

Explanations. The number of explanations to be presented was
limited to three in order to avoid an information overload [40].4 The
features used for providing the explanations were those detailed in
Section 3.

For crowdsourced explanations we used AMT workers. Each of
the six instances was presented to 15 different workers according
to the above procedure, except for assigning them with an order of
preference. After carefully going over the voting table, each worker
had to provide three reasons to support the selection of the pre-
determined winning candidate. The crowdsourced explanations
collected were then presented to other AMT workers (20 workers
for each of the six instances). These workers followed the same pro-
cedure of becoming acquainted with the problem instance, except
that their task was to pick the three most convincing explanations
in the context of justifying the selection of the pre-picked winner.
This procedure resulted in a subset of three explanations that were
picked the most by the 20 workers for each problem instance.

Table 2 details the type of explanations generated with the two
methods tested. Here, the symbol "N" in the crowdsourced explana-
tions column stands for an explanation that is not related to any of
the specified features (e.g., "The biggest group and second biggest
group of voters vote for X as their first choice"). We note that the
extent of overlap between the explanations generated with the two
methods highly varies - for some instances the explanations are
quite similar (e.g., instances 3a and 4) while for others they are
completely different (e.g., instance 2). Instance 2 has four possible
feature-based explanations due to a tie in the scores of "L" and "BR"
which is broken randomly. For some of the instances (e.g., instances
3a and 4a) the crowdsourced explanations rely on features for which
the selected outcome is not even the best among the three. Finally,
we note that with the crowdsourced explanation we find some re-
dundancy (providing the same explanations in different words), e.g.,
in instances 1 and 3, two of the explanations given relate to the
advantage of the winning choice in terms of first preference votes
(plurality).

Table 2: Classification of the crowdsourced-based and
feature-based explanations for the different instances.

Instance Winner Features Crowdsourced Feature-based
1 P/B/H/BR/M/L P/P/BR H/L/BR
2 P/B/H/BR/M/L P/N/N H/M/L/BR
3 P P/P/N P
3a B/H/BR/M/L BR/H/P H/BR/L
4 B/H/BR/M/L BR/H/N L/BR/H
4a P P/BR/H P

Study Design. The study used a 3×2 between-participants exper-
imental design, with factors of Explanation – None, Crowdsourced
and Feature-based – and Preference Index – Second Preference and
Third Preference. While there are six diverse problem instances,
we do not include them as a factor in the Analysis of of Variance
(ANOVA) as the aim of presenting the participant with explanations
is to overcome this diversity. The analysis also does not compare
4While [40] is in the field of recommender systems, we wanted to test a similar
approach in the field of social choice theory.



satisfaction and acceptance between different problem instances
and whenever applicable, different methods within a specific prob-
lem instance are compared. There are approximately 80 responses
per Preference Index and Explanation.

Data and Analysis. Overall, we had 465 participants in our ex-
periments according to the breakdown given in Table 3, which
also includes participants’ demographics. The analysis of partici-
pants’ average satisfaction and acceptance was carried out using
3 × 2 (𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑃𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥) ANOVA with Aligned
Rank Transforms, since such a test is more appropriate in a set-
ting where Likert scale data is analyzed [52]. Further tests on the
efficacy of the explanations were carried out by splitting the data
on the basis of the Preference Index, using an upper-tailed Mann-
Whitney-Wilcoxon test. The comparison between the feature-based
explanations and crowdsourced-explanations was carried out us-
ing a two-sided Mann-Whitney-Wilcoxon test. Finally, to analyze
the difference between the proportion of participants convinced
that no other candidate could be justifiably selected (i.e., based on
the answers to question 2a), a 2-sample Z-test for proportions was
carried out.

Table 3: Breakdown of participants by explanation, average
age and division (in percentages) between men and women.

Explanation #Participants Average Age %Men/%Women
None 158 39.10 58.2/41.8

Feature-based 154 41.68 58.3/41.7
Crowdsourced 153 42.16 50.3/49.7

6 RESULTS AND ANALYSIS
Figure 2 depicts the average satisfaction and average acceptance
cross-instances when not providing explanations and when provid-
ing crowdsourced and feature-based explanations. From the figure
we observe that both types of explanations provided resulted in a
substantial increase in satisfaction and acceptance compared to not
providing explanations. We emphasize that even though the expla-
nations provided managed to eliminate 13 − 22% of the difference
between the scores obtained with no explanations and a perfect
satisfaction/acceptance score of 5, it is very unlikely that even a
perfect explanation could attain that perfect score, given that it is
the participant’s second and third preference that is picked as the
winning outcome.

Figure 2: Average Satisfaction (1) and Acceptance (2) across
the three types of Explanations.

From the ANOVA (taking into consideration the effect of the
Preference Index as well as the interaction effect of the Preference
Index and the explanations) we obtain that the increase in aver-
age satisfaction and acceptance resulting from the provision of
explanations, with both explanation-generation methods tested, is
statistically significant (p-value<0.05). To better understand where
explanations make the most difference we provide the average
satisfaction (Figure 3) and acceptance (Figure 4) for each of the
6 instances in Table 1. From the figures we observe that for in-
stances 3 and 4a, where the winning candidate has the highest
first place votes (i.e., the plurality criterion holds), the presence
of explanations does not improve a participant’s satisfaction and
only slightly improves acceptance. Indeed, the Plurality voting rule
enjoys higher familiarity than the others among people [31] and
was found to be dominant in experiments studying people’s vote
manipulation and bias towards certain candidates [4, 18, 50]. When
the winning candidate does not have the highest first place votes,
the choice needs to be explicitly justified for people to be satisfied
and accepting. Explanations did improve in all of the other four
instances. In fact, the highest improvements compared to providing
no explanations were obtained with instances 3a and 4, where plu-
rality is not a feature to begin with. These insights suggest that the
scoring and ranking of explanations can be improved by taking into
consideration participant familiarity with the different features, but
this is beyond the scope of the current paper.

Figure 3: Average Satisfaction across the 6 instances.

Another important insight revealed from Figures 3 and 4 is that
participants’ satisfaction from and acceptance of the winning can-
didate in a given instance are not fully correlated. For example,
in instance 4a, having no explanations resulted in a slightly ele-
vated satisfaction, however a reduced acceptance compared to when
provided with explanations. Similarly, with explanations there are
instances (e.g., 3a) where feature-based explanations improved ac-
ceptance (compared to crowdsourced explanations) however de-
creased satisfaction, and vice-versa (e.g., 4a). This suggests that the
choice of the explanations to be used should depend on the system
designer’s goal of whether to increase satisfaction or acceptance.

To better understand the effect of the participant’s preference
index of the winning candidate on satisfaction and acceptance



Figure 4: Average Acceptance across the 6 instances.

in the context of providing explanations, we introduce Figures 5
and 6. These figures are equivalent to Figure 2, except that they
distinguish only participants who had their second choice declared
winner (Figure 5) and those that had their third choice declared
winner (Figure 6). From the figures we observe that satisfaction
and acceptance are both affected by the ordinal position of the
winning candidate in the participant’s allotted order of preference,
i.e., the Preference Index— the perceived increase in satisfaction
and acceptance is significantly greater when the winning candidate
is the participant’s third preference, compared to when it is the
second preference. Indeed, when the participant has the least utility
from the winning candidate , i.e., when she is likely to be most
disappointed, explanations are an effective tool in improving the
satisfaction and acceptance.

Figure 5: Average satisfaction (1) and acceptance (2) across
the three types of Explanationswhen thewinning candidate
is the second preference of the participant.

A pairwise comparison of the two explanation-generation meth-
ods (Figures 3 and 4) reveals that the feature-based explanations
manage to perform at least as well as crowdsourced explanations.
However, we observe that the performance of the two explanation
methods highly varies between instances (except for instances 3 and
4a). This means that the choice of the explanation to be provided
matters, and it is not simply the provision of explanations itself that
accounts for the improvement achieved in acceptance and satisfac-
tion. Figure 7 depicts the percentage of participants who believed
that one of the other candidates was more deserving of being the
winner, for the case where no explanations are provided and with

Figure 6: Average satisfaction (1) and acceptance (2) across
the three types of Explanationswhen thewinning candidate
is the third preference of the participant.

the two explanation-generation methods tested. From the graph
we observe that providing explanations decreases the percentage
of participants who believe a different winner should have been
elected. Furthermore, while the decrease obtained with the crowd-
sourced explanations is not statistically significant (p-value>0.05),
with the feature-based explanations the improvement is statisti-
cally significant (p-value< 0.05), both compared to when providing
crowdsourced explanations and when providing no explanations.

Figure 7: Percentage of participants that feel that another
winner is justified.

7 RELATEDWORK
Our work falls primarily under the category of explaining the deci-
sions of intelligent systems. This line of work has gained a lot of
traction in recent years due to the European Union’s new General
Data Protection Regulation (GDPR), which highlights the right of
citizens to receive meaningful information on the algorithmic de-
cisions involving them [20, 45]. Since black-box models (such as
deep learning) have been a cause of caution [36] and have led to the
demand of transparency in algorithmic decision-making [14], the
more-researched domain in the context of explainability has been
Machine Learning. This has resulted in a distinct sub-field called
Explainable Artificial Intelligence (XAI). With the advent of this
field, work on defining the concepts [43], establishing a framework
to assess explainability systems [21, 49, 51] and identifying the best
practices for transparency in algorithmic systems [44] have been
carried out. Ideas from other fields such as psychology [32], multi-
agent systems [11], argumentation [1], planning [48] and logic [10]



have also been used to establish definitions for explainability and
propose methods to construct explanations.

With respect to the specific case of social choice theory, work on
explaining and justifying collective decisions is far more limited. For
example, some work suggested explanations using axioms [7, 9],
justifying the decisions of approval sorting [5] and analysis of
the computational complexity of generating explanations [6, 37].
However, translating the techniques of these studies to conducting
real-time experiments with non-expert humans is challenging, due
to its theoretical nature.

The necessity to translate theoretical foundations into explana-
tions was put forward by Procaccia [38]. This is justified by an
experiment with actual stakeholders of a rent division problem
to whom the solutions are explained using axiomatic foundations
[19]. In addition to the axiomatic approach, several other means of
explanation have been proposed and analyzed, such as supplying
counterfactuals [29, 34], dialogue-games based on argumentation
[46], local approximations [42], feature-based explanations [24, 30]
and example-based explanations [28]. All of these papers rely on
a particular algorithm leading to the solution to explain the opti-
mality of the solution, whereas we do not rely on one particular
algorithm but on features of the solution to explain it. One excep-
tion is recent research by Zar et al [56] that uses explanations as a
means of providing additional information such as time and cost
in the context of ridesharing and uses human feedback to pick the
best explanation. Still, their work uses rather ad-hoc specific expla-
nations and there is no cohesive methodology suggesting how an
initial set of explanations can be generated.

Finally, in the context of ranked voting that is used in our ex-
periments as the application domain, there is much we can learn
from insights obtained in prior work related to human behavior.
This includes a higher rate of manipulation for the Plurality voting
rule [4, 18], bias towards the candidate with the highest first place
votes [50] and a higher familiarity of the Plurality voting rule [31].
Surveys to analyze the understanding of ranked choice voting have
reported that the respondents do not find it as difficult to follow the
rules of ranked choice voting as it was perceived by the researchers
[13, 35]. Naturally, all of these insights can be highly valuable in
constructing effective explanations but they are very particular to
the domain of ranked voting while our feature-based explanations
are general and can be used for any domain.

8 CONCLUSION AND FUTUREWORK
Applying mechanism design and social choice theory in real life is
highly challenging. Even if one manages to aggregate or combine
the individual preferences into a collective social welfare func-
tion, there is no guarantee concerning people’s satisfaction from
and acceptance of the outcome, as these are affected by various
factors. One possible method to increase satisfaction and accep-
tance is adapting the mechanism itself, e.g., by gaining a better
understanding of how these measures are affected by the specific
instance properties and the elected choice. In this paper we present
a complementary approach, which uses explanations as a means
for improving participant satisfaction and acceptance, for cases
where the mechanism’s outcome is not the most preferred by the
individual.

As we argue throughout the paper, explaining a social choice is
different from classical XAI. While the latter aims to explain the op-
timality of the decision made for the specific user, the social-choice
explanation is trying to explain the decision made in the context of
a social setting. Hence, also the difference between acceptance and
satisfaction. As discussed in the related work section, despite the
importance of this field, most work in the area of XAI has focused,
to date, on generating explanations of the first type above.

Our results show that explaining a social choice in the context of
the specific social setting can have a substantial (positive) influence
over individuals’ satisfaction from and acceptance of the outcome
picked. In particular, the extent of improvement achieved with
explanations increases as we explain the selection of less favorable
outcomes, based on the participant’s preference index.

While the success of crowdsourced explanations was rather ex-
pected, as people are likely to be influenced by explanations made
by people, we are highly encouraged by the performance of our
automated explanation generation method based on theoretical
features. Not only did the feature-based explanations perform as
well as with crowdsourced explanations, it also managed to signifi-
cantly reduce the percentage of participants who believe another
candidate is more deserving of winning, compared to the latter.
Furthermore, our method manages to reach such a performance
even though it is inherently limited to providing only explanations
related to features in which the outcome to be explained is ranked
first. Meaning that for some instances it only provides a single
explanation, as opposed to three explanations provided by people.
All in all, the ability to automatically produce effective explanations
saves substantial resources as it does not require hiring people for
providing explanations from scratch any time a new instance needs
to be explained. Obviously, upon accumulating substantial training
data, one can develop machine learning-based prediction models in
order to facilitate the extraction of an effective set of explanations.
Still, much human labor is required in order to generate such data.
Our automatic method does not require any human-in-the-loop
intervention.

We note that even though the utmost care was taken in our
experiments in order to replicate real-life settings, such as the
notion of utility through an allotted order of preference, voting
does not happen in a vacuum and voters are subject to external
influences such as poll predictions. Hence, a prominent direction
for future research is an experimental design tending to all of these
issues. Another related direction is employing similar ideas and
proposing algorithms to generate explanations in other domains.

Finally, we propose to extend the set of features based on which
explanations can be generated. We have used six features to frame
the explanations, however the literature is replete with axioms and
criteria that can be considered for explanations. In the future, this
research can be complemented by studies that use as many features
as possible to frame the explanations while using crowdsourcing
coupled with machine learning to choose the best explanations
[26].
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